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SUMMARY:  
The fractal dimension, a quantitative parameter, represents the characterization of self-similarity in winds. Whereas, 
the value of fractal dimension of wind speed time histories highly depends on the adopted estimation method. As a 
result, this paper focuses on the comparison of various estimation methods for the fractal dimension of wind speeds 
under typhoon climate. Firstly, the structure function method is firstly verified to be more effective and reliable for 
identifying the fractal dimension of the stochastic Weierstrass Mandelbrot function than the box counting method, 
variation method and R/S analysis method. Then, the fractal dimensions of wind speed data recorded before and 
after Typhoon Mangkhut landing are estimated and compared in detail. The variation method could obtain a smaller 
dimension 𝐷𝐷 than its derivative approach (i.e., box counting method). The R/S analysis method gives the minimum 
estimate close to the unit and is not applicable to obtain fractal dimensions of the wind speed series. The mean 
dimension 𝐷𝐷 ≈ 1.7512 estimated by the structure function method is the closest to the representative value 1.7, 
which present the best accuracy. 
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1. GENERAL INSTRUCTIONS 
The observed activity in many phenomena is a consequence of several invisible layers of 
movement, and these motions are associated with one level to the next by means of a scaling 
factor. Processes with this feature were regarded as fractals (Mandelbrot, 1994). The fractal 
dimension (𝐷𝐷) is the basis to investigate simple character for the assembly of these processes 
(Rubalcaba, 1997). 
 
The fractal dimensional analysis has received increasing attention to study the nature of wind. At 
present, there exist several algorithms to derive the fractal dimension of a given wind speed time 
series, including the box counting method (Sarkar and Chaudhuri, 1994), variation method 
(Dubuc et al., 1987), R/S analysis method (Peters, 1991), structure function method (Ganti and 
Bhushan, 1995) and so on. There exist sufficient evidences to show that the estimation of the 
fractal dimension of the wind speed shows significant variability due to the different methods 
used. Therefore, finding a suitable method to estimate D is an urgent task in practical 
applications, and it is necessary to conduct a detailed comparative analysis of methods for fractal 
dimension estimation. 
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The main objective of this study is to find an appropriate estimation method to estimate the 
fractal dimension 𝐷𝐷  and provide the comparison results of fractal dimensions by various 
estimation methods for the measured typhoon wind speed data recorded at different heights. 
 
2. METHODOLOGY 
Fractal analysis has become a very useful and powerful tool for studying the underlying 
dynamics of abundant natural processes, and the fractal dimension 𝐷𝐷  can take non-integer 
values, ranging from 1 to 2. In this section, four commonly used methods including the box 
counting method, the variation method, the structure function method and the R/S analysis 
method will be compared on merit to select the most suitable fractal dimension calculation 
method for wind speed data. 
 
In order to select the optimal method for estimating the fractal dimension, it is necessary to 
introduce the Weierstrass Mandelbrot (WM) (Humphrey et al., 1992) fractal function with the 
known dimension 𝐷𝐷.  

𝑅𝑅(𝑡𝑡) = 𝐴𝐴 �
𝑐𝑐𝑐𝑐𝑐𝑐(∅𝑛𝑛) − 𝑐𝑐𝑐𝑐𝑐𝑐 (𝛾𝛾𝑛𝑛𝑡𝑡 + ∅𝑛𝑛)

𝛾𝛾(2−𝐷𝐷)𝑛𝑛

∞

 (1 < 𝐷𝐷 < 2, 𝛾𝛾 > 1) (1) 

where ∅𝑛𝑛 is taken as a set of random numbers ranging from 0 to 2π, and 𝐴𝐴 is an amplitude 
parameter. The parameter 𝛾𝛾 of the WM function determines the density of the spectrum and the 
relative phase differences between the spectral modes. 
 
In this paper, a fractal dimension of 1.7 was used to generate the time series. Subsequently, the 
abovementioned estimation methods are employed to calculate the fractal dimension of 
simulated time series. Considering the existence of the random number ∅𝑛𝑛 in Eq. (1), different 
time series may be generated for each simulation. Therefore, 50 iterations of the simulation were 
implemented with the same control parameters (i.e., 𝐴𝐴 = 1,𝐷𝐷 = 1.7  and 𝛾𝛾 = 1.08 in Eq. (1)). 
Fig. 1(a) exhibits the results of 50 repetitive operations, showing that the random parameter ∅𝑛𝑛 
have little effect on the recognition accuracy of the dimension 𝐷𝐷. Besides, by taking the value of 
D from 1.4 to 1.85, Fig. 1(b) shows the corresponding variation of the calculated fractal 
dimension with the actual value. It can be found that the structure function method is the most 
applicable and accurate for the identification of fractal dimensions of stochastic WM function. 
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Figure 1 Estimated results of fractal dimensions 
 

3. FRACTAL DIMENSION OF TYPHOON WIND SPEEDS 
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3.1. Data source and description 
The data involved in this study were recorded continuously by four three-dimensional (3D) sonic 
anemometers during super typhoon Mangkhut from September 15 to September 18, 2018, 
including 526 consecutive 10-min wind speed samples with an accuracy of ±0.1 m/s. The 
associated sonic anemometers were installed at the 356 m high meteorological gradient tower 
in Shenzhen, China (22°38’59’’N, 113°53’36’’E). The means of longitudinal wind speed data 
with a fixed period of 10 min before and after Typhoon Mangkhut landing were recorded at 
length, as shown in Fig. 2. It can be seen that the mean wind speed increases gradually with the 
increase of the recorded height. Different from the monsoon, it increases and then decreases 
sharply at each height, rather than remaining constant. 
 

 
 

Figure 2 Longitudinal mean wind speeds at each height 
 
3.2. Analysis of fractal dimensions 
The analysis in section 2 concluded that the structure function method is more effective than the 
box counting method, variation method, and R/S analysis method in identifying the fractal 
dimension of the stochastic WM function. Fig. 3 also shows the variation of the fractal 
dimension of the longitudinal wind speed samples during the whole measurement period using 
the four above-mentioned calculation methods. As shown in Fig. 3, the derived fractal 
dimensions based on the same method became more or less stable throughout the four days of 
measurements, with the mean dimension 𝐷𝐷 ≈ 1.7512  estimated by the structure function 
method being the closest to the representative value 1.7. In the case of the box counting method, 
its mean estimates for measured heights of 10, 40, 160, and 320 m are 1.5296, 1.5412, 1.5351, 
and 1.5423. Meanwhile, the variation method could obtain a smaller dimension 𝐷𝐷  than its 
derivative approach (i.e., box counting method). Fig. 3 also presents that the R/S analysis method 
could obtain the minimum estimate close to the unit and is not applicable to obtain fractal 
dimensions of the wind speed series. Instead, the mean Hurst Exponents of the wind speed data 
𝐻𝐻 = 2 − 𝐷𝐷 calculated by the R/S analysis method are 0.9526, 0.9658, 0.9694 and 0.9673 at the 
heights of 10, 40, 160 and 320 m, respectively, which characterizes the strong persistence of 
wind speeds. 
 
4. CONCLUSIONS 
This paper focuses on selecting a suitable estimation method for the fractal dimension of wind 
speeds. Based on the stochastic WM functions with the known fractal dimensions, the structure 
function method is proved to be more suitable for identifying the fractal dimension than the box 
counting method, variation method and R/S analysis method. Field-measured wind data recorded 
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during Typhoon Mangkhut (2018) were further analyzed and discussed in detail by 
aforementioned four estimation methods. The accuracy of the fractal dimension estimation of the 
wind speed is significantly affected by the adopted calculation method, where the mean 
dimension of 1.75 obtained by the structure function method is closer to the representative value 
of 1.7 than other methods. In addition, although the R/S analysis method is not suggested to 
compute the fractal dimension, it reveals that obtained reliable Hurst exponents of wind speeds 
close to 1, which characterizes the strong persistence of wind speeds. 
 

 
Figure 2 Fractal dimensions of fluctuating wind speed samples at each measured height 
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